

International Journal Research Publication Analysis

Page: 160-170

NEW CONTRA MAPPINGS IN NANO TOPOLOGICAL SPACES

Raman R.^{1*}, Pious Missier S.² and E. Sucila³

¹Assistant Professor, Department of Mathematics, Grace College of Engineering, Mullakadu, Thoothukudi - 628005, (Affiliated to Anna University, Chennai), Tamilnadu, India.

²Head and Associate Professor (Rtd), Department of Mathematics, Don Bosco College of Arts and Science, Keela Eral, Thoothukudi-628908, (Affiliated to Manonmaniam Sundaranar University, Abishekappatti - 627 012, Tirunelveli), Tamilnadu, India.

³Associate Professor, Department of Mathematics, G.Venkataswamy Naidu College, (Affiliated to Manonmaniam Sundaranar University, Abishekappatti, Tirunelveli-627 012) Kovilpatti, Thoothukudi 628502, Tamilnadu,

Article Received: 10 September 2025***Corresponding Author: Raman R.****Article Revised: 30 September 2025**

Assistant Professor, Department of Mathematics, Grace College of Engineering, Mullakadu,

Published on: 20 October 2025

Thoothukudi - 628005, (Affiliated to Anna University, Chennai), Tamilnadu, India.

ABSTRACT

Nano topology was initiated by M.Lellis Thivagar with regard to a subset X of a universe which is described in terms of lower, upper and boundary approximations of X. He also described nano interior and nano closure in nano topological spaces. In this paper, we define some new type of contra mappings namely contra Nano bc-continuous mapping in Nano topological spaces. In addition to this, we discussed some properties of contra nano bc-continuous mappings in nano topological spaces.

KEYWORDS: nano bc-open set, nano bc-continuous mapping, contra nano bc-continuous mapping.

I. INTRODUCTION

The study of *nano topology* was started by M. Lellis Thivagar et al.[8] with regard to a subset X of a universe that is described in terms of lower, upper and boundary approximations of X. He additionally described *nano interior* and *nano closure* in *nano topological spaces*.(or briefly $\mathbb{N}T$ Spaces). Andrijevic.[1] presented and studied a category of generalized open sets in a topological space referred to as b-open sets. Further C. Indirani et al.[4] created and studied *nano b*-open sets ($\mathbb{N}b$ sets) in *nano topological spaces* ($\mathbb{N}TS$). $\mathbb{B}c$ open sets were

first introduced in topological spaces by Hariwan Z. Ibrahim [6]. Here we proceed to present our findings on nano $b\mathbb{C}$ -open mappings in Nano Topological Spaces.

II. PRELIMINARIES

Definition 2.1. [8] Let U denote a non-empty finite set of elements referred to as universe and R represents an equivalence relation on U named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (U, R) is called as the approximation space. Let $X \subseteq U$.

(i) **The lower approximation** of X with respect to R is the set of all elements, which can be for certain classified as X with respect to R and it is denoted by $L_R(X)$. That is, $L_R(X) = \bigcup_{x \in U} \{R_x : R_x \subseteq X\}$ where R_x denotes the equivalence class determined by $x \in U$.

(ii) **The upper approximation** of X with respect to R is the set of all elements, which can be possibly classified as X with respect to R and it is denoted by $U_R(X)$. That is $U_R(X) = \bigcup_{x \in U} \{R_x : R_x \cap X \neq \emptyset\}$.

(iii) **The boundary region** of X with respect to R is the set of all elements, that can be classified neither as X nor as not- X with respect to R and it is denoted by $B_R(X)$. That is, $B_R(X) = U_R(X) - L_R(X)$.

Definition 2.2. [8] Let U represent the universe and R represent an equivalence relation on U . Then $\tau_R(X) = \mathbb{N}^T = \{U, \emptyset, L_R(X), U_R(X), B_R(X)\}$ where $X \subseteq U$. Then, $\tau_R(X)$ satisfies the axioms listed below.

(i) U and $\emptyset \in \tau_R(X)$.

(ii) The union of the elements of any sub collection of $\tau_R(X)$ is in $\tau_R(X)$.

(iii) The intersection of the elements of any finite subcollection of $\tau_R(X)$ is in $\tau_R(X)$. That is, $\tau_R(X)$ is a topology on U referred to as the *nano topology* (\mathbb{N}^T) on U with respect to X . We call $(U, \tau_R(X))$ (or) (U, \mathbb{N}^T) as the *nano topological space* (\mathbb{N}^T -TS in short). The elements of \mathbb{N}^T are known as \mathbb{N} -open sets (briefly, \mathbb{N} -OS). The complement of \mathbb{N} -open sets are \mathbb{N} -closed sets (briefly, \mathbb{N} -CS).

Example 2.3. [8] Let $U = \{p, q, r, s\}$ with $U/R = \{\{p\}, \{q\}, \{r, s\}\}$ and $X = \{p, r\} \subseteq U$. Then the nano topology is $\tau_R(X) = \mathbb{N}^T = \{U, \emptyset, \{p\}, \{r, s\}, \{p, r, s\}\}$.

Remark 2.4. [8] If $\tau_R(X) = \mathcal{N}_0^T$ is the nano topology on U with respect to X and B_N is a nano subset of \mathcal{N}_0 -TS, then $B_N = \{U, L_R(X), B_R(X)\}$ is referred to as the basis for $\tau_R(X)$.

Definition 2.5 [8] If (U, \mathcal{N}_0^T) is a \mathcal{N}_0 -TS with respect to X where

$X \subseteq U$ and if A_N is a nano subset in \mathcal{N}_0 -TS and if $A_N \subseteq U$, then

- (1) The Nano interior of A_N is defined as the union of all nano-open subsets of A and it is denoted by $\mathcal{N}_0\text{-int}(A_N)$. That is, $\mathcal{N}_0\text{-int}(A_N)$ is the largest nano-open subset of A_N .
- (2) The Nano closure of A_N is defined as the intersection of all nano closed sets containing A_N and it is denoted by $\mathcal{N}_0\text{-cl}(A_N)$. That is, $\mathcal{N}_0\text{-cl}(A_N)$ is the smallest nano closed set containing A_N .

Definition 2.6. Let $(U, \tau_R(X))$ be a \mathcal{N}_0 -TS and $A_N \subseteq U$. Then A_N is said to be

- (1) **Nano-semi open** set (\mathcal{N}_0 -SO set) [8] if $A_N \subseteq \mathcal{N}_0\text{-cl}[\mathcal{N}_0\text{-int}(A_N)]$ and **Nano semi-closed** (\mathcal{N}_0 -SC set) [7] if $\mathcal{N}_0\text{-int}[\mathcal{N}_0\text{-cl}(A_N)] \subseteq A_N$.
- (2) **Nano- θ open** set (\mathcal{N}_0 - θ O set) [3] if for each $x \in A_N$, there exists a nano open set (\mathcal{N}_0 -OS) G such that $x \in G \subset \mathcal{N}_0\text{cl}(G) \subset A_N$.
- (3) **Nano- θ semiopen** (\mathcal{N}_0 - θ SO) [3] if for each $x \in A_N$, there exists a nano semi open set (\mathcal{N}_0 -SO set) G such that $x \in G \subset \mathcal{N}_0\text{cl}(G) \subset A_N$.

\mathcal{N}_0 -SO(U, X), \mathcal{N}_0 - θ O(U, X) and \mathcal{N}_0 - θ SO(U, X) respectively denote the families of all nano semi-open(\mathcal{N}_0 -SO), nano θ -open(\mathcal{N}_0 - θ O) and nano θ semi-open(\mathcal{N}_0 - θ SO) subsets of U .

Definition 2.7. [3] Let $(U, \tau_R(X))$ is a \mathcal{N}_0 -TS and $A_N \subseteq U$. Then A_N is said to be nano- bopen set (\mathcal{N}_0 - bo- set) if $A_N \subseteq \mathcal{N}_0\text{-cl}(\mathcal{N}_0\text{-int}(A_N)) \cup \mathcal{N}_0\text{-int}(\mathcal{N}_0\text{-cl}(A_N))$. The complement of nano- bopen set is called nano- b-closed set (\mathcal{N}_0 b \bar{C} -set).

Example 2.8. [3] Let $U = \{p, q, r, s\}$ with $U/R = \{p\}, \{r\}, \{q, s\}$ and $X = \{p, q\}$.

Then the nano topology $\tau_R(X) = \mathcal{N}_0^T = \{U, \emptyset, \{p\}, \{p, q, s\}, \{q, s\}\}$ and nano b-open sets are $U, \emptyset, \{p\}, \{q\}, \{s\}, \{p, q\}, \{p, r\}, \{p, s\}, \{q, s\}, \{p, q, r\}, \{p, q, s\}, \{q, r, s\}$.

Definition 2.9. [10] A \mathcal{N}_0 -TS (U, \mathcal{N}_0^T) is referred to as nano locally Indiscrete space if every nano open set (\mathcal{N}_0 -OS) is nano closed set. (\mathcal{N}_0 -CS).

Definition 2.10. Let (\tilde{U}_N, τ_N) and (\tilde{V}_N, φ_N) be NTS. A mapping : $(\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ is said to be

1. N_0 -continuous (N_0 -cts for short) [9] $\zeta^{-1}(Z_N)$ is N_0 -OS in \tilde{U}_N for every N_0 -OS Z_N in \tilde{V}_N .
2. N_0 - α -continuous (N_0 - α -cts for short) [14] $\zeta^{-1}(Z_N)$ is N_0 - α -OS in \tilde{U}_N for every N_0 -OS Z_N in \tilde{V}_N .
3. N_0 -semi-continuous (N_0 - S -cts for short) [9] $\zeta^{-1}(Z_N)$ is N_0 - S -OS in \tilde{U}_N for every N_0 -OS Z_N in \tilde{V}_N .
4. N_0 -pre-continuous (N_0 - P -cts for short) [9] $\zeta^{-1}(Z_N)$ is N_0 P -OS in \tilde{U}_N for every N_0 -OS Z_N in \tilde{V}_N .
5. N_0 -b-continuous (N_0 -b-cts for short) [4] $\zeta^{-1}(Z_N)$ is N_0 -b-OS in \tilde{U}_N for every N_0 -OS Z_N in \tilde{V}_N .
6. N_0 - θ -continuous (N_0 - θ -cts for short) [3] $\zeta^{-1}(Z_N)$ is N_0 - θ -OS in \tilde{U}_N for every N_0 -OS Z_N in \tilde{V}_N .

Definition 2.11. [13] A nano subset A_N of a nano topological space (\tilde{U}_N, τ_N) is called nano $b\mathbb{C}$ - open set (N_0 - $b\mathbb{C}$ - OS) if for every $x \in A_N \in \text{N}_0\text{-BO}(\tilde{U}_N, \tau_N)$, there exists a nano closed set (N_0 -CS) \mathcal{H}_N such that $x \in \mathcal{H}_N \subset A_N$.

The family of all nano $b\mathbb{C}$ -open sets of a Nano topological space (NTS in short) (\tilde{U}_N, τ_N) is denoted by $\text{N}_0\text{-B}\mathbb{C}\text{O}(\tilde{U}_N, \tau_N)$.

Example 2.12 [13] Let $\tilde{U}_N = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, $\tilde{U}_N / \mathcal{R} = \{\{\omega_1\}, \{\omega_3\}, \{\omega_2, \omega_4\}\}$ and $X_N = \{\omega_1, \omega_2\} \subset \tilde{U}_N$. Then the Nano topology $\text{N}_0^T = \tau_{\mathcal{R}}(X_N) = \{\tilde{U}_N, \emptyset_N, \{\omega_1\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_2, \omega_4\}\}$. Then the nano Closed sets are $\tilde{U}_N, \emptyset_N, \{\omega_2, \omega_3, \omega_4\}, \{\omega_3\}$ and $\{\omega_1, \omega_3\}$. Then the collection of all N_0 -b-open sets are $\text{N}_0\text{-bO}(\tilde{U}_N, X_N) = \{\tilde{U}_N, \emptyset_N, \{\omega_1\}, \{\omega_2\}, \{\omega_4\}, \{\omega_1, \omega_2\}, \{\omega_1, \omega_3\}, \{\omega_1, \omega_4\}, \{\omega_2, \omega_4\}, \{\omega_1, \omega_2, \omega_3\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_2, \omega_3, \omega_4\}\}$ and $\text{N}_0\text{-b}\mathbb{C}\text{O}(\tilde{U}_N, X_N) = \{\tilde{U}_N, \emptyset_N, \{\omega_2, \omega_3, \omega_4\}, \{\omega_1, \omega_3\}\}$.

3. CONTRA NANO $b\mathbb{C}$ -CONTINUOUS FUNCTION

Definition 3.1. Let (\tilde{U}_N, τ_N) and (\tilde{V}_N, φ_N) be any two NTS. A function : $(\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ is said to be contra N_0 - $b\mathbb{C}$ -cts if the inverse image of every N_0 -OS in (\tilde{V}_N, φ_N) is N_0 - $b\mathbb{C}$ -CS in (\tilde{U}_N, τ_N) .

Example 3.2. Let $\tilde{U}_N = \{\varnothing_1, \varnothing_2, \varnothing_3, \varnothing_4\}$, $\tilde{U}_N / \mathcal{R} = \{\{\varnothing_1\}, \{\varnothing_3\}, \{\varnothing_2, \varnothing_4\}\}$ and $X_N = \{\varnothing_1, \varnothing_2\} \subset \tilde{U}_N$ and $NT = \tau_N (X_N) = \{\tilde{U}_N, \varnothing_N, \{\varnothing_1\}, \{\varnothing_2, \varnothing_4\}, \{\varnothing_1, \varnothing_2, \varnothing_4\}\}$. Then $\text{No-bc-CS} (\tilde{U}_N, \tau_N) = \{\tilde{U}_N, \varnothing_N, \{\varnothing_3\}, \{\varnothing_1, \varnothing_3\}, \{\varnothing_2, \varnothing_3\}, \{\varnothing_3, \varnothing_4\}, \{\varnothing_1, \varnothing_2, \varnothing_3\}, \{\varnothing_1, \varnothing_3, \varnothing_4\}, \{\varnothing_2, \varnothing_3, \varnothing_4\}\}$. Let $\tilde{V}_N = \{\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4\}$, $\tilde{V}_N / \mathcal{R} = \{\{\tilde{e}_1, \tilde{e}_2\}, \{\tilde{e}_3, \tilde{e}_4\}\}$ and $K_N = \{\tilde{e}_1, \tilde{e}_2\} \subset \tilde{V}_N$. Then $\varphi_N (K_N) = \{\tilde{V}_N, \varnothing_N, \{\tilde{e}_1, \tilde{e}_2\}\}$. Define: $(\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ by $\zeta(\varnothing_1) = \tilde{e}_4, \zeta(\varnothing_2) = \tilde{e}_3, \zeta(\varnothing_3) = \tilde{e}_1, \zeta(\varnothing_4) = \tilde{e}_2$. Thus the inverse image of $\{\tilde{e}_1, \tilde{e}_2\}$ in (\tilde{V}_N, φ_N) , i.e., $\zeta^{-1}\{\tilde{e}_1, \tilde{e}_2\} = \{\varnothing_3, \varnothing_4\}$ is No-bc-CS in (\tilde{U}_N, τ_N) . Hence ζ is contra No-bc-cts .

Theorem 3.3. Let (\tilde{U}_N, τ_N) and (\tilde{V}_N, φ_N) be any two NTS. A function $(\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ is said to be contra No-bc-cts if and only if the inverse image of every No-CS in (\tilde{V}_N, φ_N) is No-bc-OS in (\tilde{U}_N, τ_N) .

Proof. Let: $(\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ be said to be contra No-bc-cts and H_N be any No-CS in (\tilde{V}_N, φ_N) . Since ζ is contra No-bc-cts function, $\zeta^{-1}(\tilde{V}_N - H_N) = \tilde{U}_N - \zeta^{-1}(H_N)$ is No-bc-CS in (\tilde{U}_N, τ_N) . Hence $\zeta^{-1}(H_N)$ is No-bc-OS in (\tilde{U}_N, τ_N) . Conversely, let G_N be a No-OS in (\tilde{V}_N, φ_N) . By assumption, $\zeta^{-1}(\tilde{V}_N - G_N)$ is No-bc-OS . $\zeta^{-1}(\tilde{V}_N - G_N) = \tilde{U}_N - \zeta^{-1}(G_N)$, $\zeta^{-1}(G_N)$ is No-bc-CS in (\tilde{U}_N, τ_N) . Hence ζ is contra No-bc-cts function.

Theorem 3.4. Let: $(\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ be a function. If ζ is contra $\text{No-}\theta\text{-cts}$ function then it is contra No-bc-cts function.

Proof. Let: $(\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ be a contra $\text{No-}\theta\text{-cts}$ function and H_N be any No-OS in (\tilde{V}_N, φ_N) . Since ζ is contra $\text{No-}\theta\text{-cts}$ function, $\zeta^{-1}(H_N)$ is $\text{No-}\theta\text{-CS}$ in (\tilde{U}_N, τ_N) . We know that every $\text{No-}\theta\text{-CS}$ is a No-bc-CS . Therefore $\zeta^{-1}(H_N)$ is No-bc-CS in (\tilde{U}_N, τ_N) . Hence ζ is contra No-bc-cts function.

Remark 3.5. Reverse implication of the above theorem need not be true as shown in the following example.

Example 3.6. Let $\tilde{U}_N = \{\varnothing_1, \varnothing_2, \varnothing_3, \varnothing_4\}$, $\tilde{U}_N / \mathcal{R} = \{\{\varnothing_1\}, \{\varnothing_3\}, \{\varnothing_2, \varnothing_4\}\}$, $X_N = \{\varnothing_1, \varnothing_2\}$, $\tilde{V}_N = \{\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4\}$, $\tilde{V}_N / \mathcal{R} = \{\{\tilde{e}_2\}, \{\tilde{e}_1, \tilde{e}_3\}, \{\tilde{e}_4\}\}$, $\tau_N = \{\tilde{U}_N, E_N, \varnothing_N\}$ and $\varphi_N = \{\tilde{U}_N, F_N, \varnothing_N\}$, where $E_N = \{\{\varnothing_1\}, \{\varnothing_1, \varnothing_2, \varnothing_4\}, \{\varnothing_2, \varnothing_4\}\}$, $F_N = \{\{\tilde{e}_4\}, \{\tilde{e}_1, \tilde{e}_3, \tilde{e}_4\}, \{\tilde{e}_1, \tilde{e}_3\}\}$. Then τ_N and φ_N are NTS. $\text{No-}\theta\text{-OS}$ $(\tilde{U}_N, \tau_N) = \{\tilde{U}_N, \varnothing_N, \{\varnothing_2, \varnothing_4\}\}$. $\text{No-}\theta\text{-CS}$ $(\tilde{U}_N, \tau_N) = \{\tilde{U}_N, \varnothing_N, \varnothing_1, \varnothing_3\}$. No-bc-CS $(\tilde{U}_N, \tau_N) = \{\tilde{U}_N, \varnothing_N, \{\varnothing_3\}, \{\varnothing_2, \varnothing_3, \varnothing_4\}, \{\varnothing_1, \varnothing_3\}\}$. No-bc-CS $(\tilde{V}_N, \varphi_N) = \{\tilde{U}_N, \varnothing_N, \{\tilde{e}_2\}, \{\tilde{e}_1, \tilde{e}_3, \tilde{e}_4\}, \{\tilde{e}_3, \tilde{e}_4\}\}$.

Define $\zeta: (\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ by $\zeta(\omega_1) = \tilde{e}_4, \zeta(\omega_2) = \tilde{e}_3, \zeta(\omega_3) = \tilde{e}_2, \zeta(\omega_4) = \tilde{e}_1$. Then ζ is Contra No-bc-cts mapping but not contra $\text{No-}\theta\text{s-cts}$ mapping.

Theorem 3.7. Let $: (\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ be a function. If ζ is contra $\text{No-}\theta\text{s-cts}$ function then it is contra No-bc-cts function.

Proof. Let $: (\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ be a contra $\text{No-}\theta\text{s-cts}$ function and H_N be any No-OS in (\tilde{V}_N, φ_N) . Since ζ is contra $\text{No-}\theta\text{s-cts}$ function, $\zeta^{-1}(H_N)$ is $\text{No-}\theta\text{s-CS}$ in (\tilde{U}_N, τ_N) . We know that every $\text{No-}\theta\text{s-CS}$ is a No-bc-CS . Therefore $\zeta^{-1}(H_N)$ is No-bc-CS in (\tilde{U}_N, τ_N) . Hence ζ is contra No-bc-cts function.

Remark 3.8. Reverse implication of the above theorem need not be true as shown in the following example.

Example 3.9. Let $\tilde{U}_N = \{\omega_1, \omega_2, \omega_3, \omega_4\}, \tilde{U}_N / \mathcal{R} = \{\{\omega_1\}, \{\omega_2, \omega_4\}, \{\omega_3\}\}$ and $X_N = \{\omega_1, \omega_2\} \subset \tilde{U}_N$. Then the $NT = \tau_N(X_N) = \{\tilde{U}_N, \emptyset_N, \{\omega_1\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_2, \omega_4\}\}$. $\text{No-bc-CS}(\tilde{U}_N, \tau_N) = \{\tilde{U}_N, \emptyset_N, \{\omega_3\}, \{\omega_2, \omega_3, \omega_4\}, \{\omega_1, \omega_3\}\}$. The $\text{No-}\theta\text{s-CS}(\tilde{U}_N, \tau_N) = \{\tilde{U}_N, \emptyset_N, \{\omega_1\}, \{\omega_1, \omega_3\}, \{\omega_2, \omega_4\}, \{\omega_1, \omega_2, \omega_4\}\}$. Let $\tilde{V}_N = \{\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4\}, \tilde{V}_N / \mathcal{R} = \{\{\tilde{e}_2\}, \{\tilde{e}_1, \tilde{e}_4\}, \{\tilde{e}_3\}\}$ and $K_N = \{\tilde{e}_1, \tilde{e}_2\} \subset \tilde{V}_N$. Then $\varphi_N(K_N) = \{\tilde{V}_N, \emptyset_N, \{\tilde{e}_2\}, \{\tilde{e}_1, \tilde{e}_2, \tilde{e}_4\}, \{\tilde{e}_1, \tilde{e}_3\}\}$. $\text{No-CS}(\tilde{V}_N, \varphi_N) = \{\tilde{V}_N, \emptyset_N, \{\tilde{e}_3\}, \{\tilde{e}_1, \tilde{e}_3, \tilde{e}_4\}, \{\tilde{e}_2, \tilde{e}_4\}\}$. Then $\tau_N(X_N)$ and $\varphi_N(K_N)$ are NT_S . Define: $(\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ by $\zeta(\omega_1) = \tilde{e}_3, \zeta(\omega_2) = \tilde{e}_1, \zeta(\omega_3) = \tilde{e}_3, \zeta(\omega_4) = \tilde{e}_4$. Here ζ is contra No-bc-cts but not contra $\text{No-}\theta\text{s- cts}$ mapping.

Result 3.10. The composition of two contra No-bc-cts functions need not be contra No-bc-cts function as seen from the following example.

Example 3.11. Let $\tilde{U}_N = \{\omega_1, \omega_2, \omega_3, \omega_4\}, \tilde{U}_N / \mathcal{R} = \{\{\omega_1\}, \{\omega_2, \omega_4\}, \{\omega_3\}\}$ and $X_N = \{\omega_1, \omega_2\} \subset \tilde{U}_N$. Then the $NT = \tau_N(X_N) = \{\tilde{U}_N, \emptyset_N, \{\omega_1\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_2, \omega_4\}\}$. $\text{No-bc-CS}(\tilde{U}_N, \tau_N) = \{\tilde{U}_N, \emptyset_N, \{\omega_3\}, \{\omega_2, \omega_3, \omega_4\}, \{\omega_1, \omega_3\}\}$. Let $\tilde{V}_N = \{\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4\}, \tilde{V}_N / \mathcal{R} = \{\{\tilde{e}_1, \tilde{e}_2\}, \{\tilde{e}_3, \tilde{e}_4\}\}$ and $K_N = \{\tilde{e}_1, \tilde{e}_2\} \subset \tilde{V}_N$. Then $\varphi_N(K_N) = \{\tilde{V}_N, \emptyset_N, \{\tilde{e}_1, \tilde{e}_2\}\}$. $\text{No-bc-CS}(\tilde{V}_N, \varphi_N) = \{\tilde{V}_N, \emptyset_N, \{\tilde{e}_3\}, \{\tilde{e}_4\}, \{\tilde{e}_3, \tilde{e}_4\}\}$. Define: $(\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ by $\zeta(\omega_1) = \tilde{e}_3, \zeta(\omega_2) = \tilde{e}_1, \zeta(\omega_3) = \tilde{e}_3, \zeta(\omega_4) = \tilde{e}_4$. Thus the inverse image $\{\tilde{e}_1, \tilde{e}_2\}$ in (\tilde{V}_N, φ_N) is No-bc-CS in (\tilde{U}_N, τ_N) . Thus ζ is contra No-bc-cts . Let $\dot{W}_N = \{\delta_1, \delta_2, \delta_3, \delta_4\}$ and $\dot{W}_N / \mathcal{R} = \{\{\delta_1\}, \{\delta_3\}, \{\delta_1, \delta_4\}\}$. Let $S_N = \{\delta_1, \delta_3\} \subset \tilde{V}_N$ and \dot{Z}_N

$(S_N) = \{\tilde{V}_N, \emptyset_N, \{\delta_3\}, \{\delta_1, \delta_4\}, \{\delta_1, \delta_3, \delta_4\}\}$. Let $\eta : \tilde{V}_N \rightarrow \dot{W}_N$ defined by $\eta(\tilde{e}_1) = \delta_4, \eta(\tilde{e}_2) = \delta_1, \eta(\tilde{e}_3) = \delta_2, \eta(\tilde{e}_4) = \delta_3$. Then η is contra $\text{N}_\text{o}-\text{bC-cts}$. Clearly these two functions are contra $\text{N}_\text{o}-\text{bC-cts}$. But their composition is not contra $\text{N}_\text{o}-\text{bC-cts}$ since for the N_o -OS $\{\delta_3\}$ in (\dot{W}_N, \tilde{Z}_N) , $(\eta \circ \zeta)^{-1} = \zeta^{-1}(\eta^{-1}(\delta_3)) = \{\varnothing_1\}$ is not $\text{N}_\text{o}-\text{bC-CS}$ in (\tilde{U}_N, τ_N) . Hence $\eta \circ \zeta$ is not contra $\text{N}_\text{o}-\text{bC-cts}$. Thus the composition of two contra $\text{N}_\text{o}-\text{bC-cts}$ functions need not be contra $\text{N}_\text{o}-\text{bC-cts}$ function.

Result 3.12. Contra $\text{N}_\text{o}-\text{bC-cts}$ and $\text{N}_\text{o}-\text{bC-cts}$ are independent.

Example 3.13. Let $\tilde{U}_N = \{\varnothing_1, \varnothing_2, \varnothing_3, \varnothing_4\}, \tilde{U}_N / \mathcal{R} = \{\{\varnothing_1, \varnothing_2\}, \{\varnothing_3, \varnothing_4\}\}$ and $X_N = \{\varnothing_1, \varnothing_2\} \subset \tilde{U}_N$. Then the NT = $\tau_N(X_N) = \{\tilde{U}_N, \emptyset_N, \{\varnothing_1, \varnothing_2\}\}$. $\text{N}_\text{o}-\text{bC-CS}(\tilde{U}_N, \tau_N) = \{\tilde{U}_N, \emptyset_N, \{\varnothing_3, \varnothing_4\}, \{\varnothing_2, \varnothing_4\}, \{\varnothing_1, \varnothing_3\}\}$. Let $\tilde{V}_N = \{\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4\}, \tilde{V}_N / \mathcal{R} = \{\{\tilde{e}_3\}, \{\tilde{e}_2\}, \{\tilde{e}_1, \tilde{e}_4\}\}$ and $K_N = \{\tilde{e}_1, \tilde{e}_3\} \subset \tilde{V}_N$. Then $\varphi_N(K_N) = \{\tilde{V}_N, \emptyset_N, \{\tilde{e}_3\}, \{\tilde{e}_1, \tilde{e}_4\}, \{\tilde{e}_1, \tilde{e}_3, \tilde{e}_4\}\}$. $\text{N}_\text{o}-\text{CS}(\tilde{V}_N, \varphi_N) = \{\tilde{V}_N, \emptyset_N, \{\tilde{e}_2\}, \{\tilde{e}_2, \tilde{e}_3\}$, Since $\zeta^{-1}(\{\tilde{e}_3, \tilde{e}_4\}) = \{\varnothing_1, \varnothing_3\}$. Then ζ is $\text{N}_\text{o}-\text{bC-CS}$. But $\zeta^{-1}(\{\tilde{e}_3\}) = \varnothing_1$ is not $\text{N}_\text{o}-\text{bC-CS}$ in (\tilde{U}_N, τ_N) . Thus ζ is not contra $\text{N}_\text{o}-\text{bC-cts}$.

Example 3.14. Let $\tilde{U}_N = \{\varnothing_1, \varnothing_2, \varnothing_3, \varnothing_4\}, \tilde{U}_N / \mathcal{R} = \{\{\varnothing_1\}, \{\varnothing_3\}, \{\varnothing_2, \varnothing_4\}\}$ and $X_N = \{\varnothing_1, \varnothing_2\} \subset \tilde{U}_N$. Then the NT = $\tau_N(X_N) = \{\tilde{U}_N, \emptyset_N, \{\varnothing_1\}, \{\varnothing_2, \varnothing_4\}, \{\varnothing_1, \varnothing_2, \varnothing_4\}\}$. $\text{N}_\text{o}-\text{bC-CS}(\tilde{U}_N, \tau_N) = \{\tilde{U}_N, \emptyset_N, \{\varnothing_2, \varnothing_3, \varnothing_4\}, \{\varnothing_1, \varnothing_3\}, \{\varnothing_3\}\}$. Let $\tilde{V}_N = \{\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4\}, \tilde{V}_N / \mathcal{R} = \{\{\tilde{e}_1, \tilde{e}_2\}, \{\tilde{e}_3, \tilde{e}_4\}\}$ and $K_N = \{\tilde{e}_1, \tilde{e}_2\} \subset \tilde{V}_N$. Then $\varphi_N(K_N) = \{\tilde{V}_N, \emptyset_N, \{\tilde{e}_1, \tilde{e}_2\}\}$. $\text{N}_\text{o}-\text{CS}(\tilde{V}_N, \varphi_N) = \{\tilde{V}_N, \emptyset_N, \{\tilde{e}_3, \tilde{e}_4\}\}$. Define : $(\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ by $\zeta(\varnothing_1) = \tilde{e}_4, \zeta(\varnothing_2) = \tilde{e}_3, \zeta(\varnothing_3) = \tilde{e}_1, \zeta(\varnothing_4) = \tilde{e}_2$. Since $\zeta^{-1}(\{\tilde{e}_1, \tilde{e}_2\}) = \{\varnothing_3, \varnothing_4\}$ which is $\text{N}_\text{o}-\text{bC-CS}$ in (\tilde{U}_N, τ_N) . Hence ζ is contra $\text{N}_\text{o}-\text{bC-CS}$. But $\zeta^{-1}(\{\tilde{e}_3, \tilde{e}_4\}) = \{\varnothing_1, \varnothing_2\}$ is not $\text{N}_\text{o}-\text{bC-CS}$ in (\tilde{U}_N, τ_N) . Thus ζ is not $\text{N}_\text{o}-\text{bC-cts}$.

Theorem 3.15. Let $(\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ be a contra $\text{N}_\text{o}-\text{bC-cts}$ function. Let $\eta : (\tilde{V}_N, \varphi_N) \rightarrow (\dot{W}_N, \xi_N)$ be a N_o -cts function. Then $\eta \circ \zeta : (\tilde{U}_N, \tau_N) \rightarrow (\dot{W}_N, \xi_N)$ is a contra $\text{N}_\text{o}-\text{bC-cts}$ function.

Proof. Let W_N be a N_o -OS in (\dot{W}_N, ξ_N) . By hypothesis, $\eta^{-1}(W_N)$ is a N_o -OS in (\tilde{V}_N, φ_N) . Since ζ is contra $\text{N}_\text{o}-\text{bC-cts}$ function, $\zeta^{-1}(\eta^{-1}(W_N))$ is a $\text{N}_\text{o}-\text{bC-CS}$ in (\tilde{U}_N, τ_N) . Hence $\eta \circ \zeta$ is contra $\text{N}_\text{o}-\text{bC-cts}$ function.

Theorem 3.16. Let $(\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ be a contra N_o -b \mathbb{C} -cts function. Let $\eta : (\tilde{V}_N, \varphi_N) \rightarrow (\dot{W}_N, \xi_N)$ be a contra N_o -cts function. Then $\eta \circ \zeta : (\tilde{U}_N, \tau_N) \rightarrow (\dot{W}_N, \xi_N)$ is a N_o -b \mathbb{C} -cts function.

Proof. Let W_N be a N_o -OS in (\dot{W}_N, ξ_N) . By hypothesis, $\eta^{-1}(W_N)$ is a N_o -CS in (\tilde{V}_N, φ_N) . Since ζ is contra N_o -b \mathbb{C} -cts function, $\zeta^{-1}(\eta^{-1}(W_N))$ is a N_o -b \mathbb{C} -OS in (\tilde{U}_N, τ_N) . Hence $\eta \circ \zeta$ is a N_o -b \mathbb{C} -cts function.

Theorem 3.17. Let $\zeta : (\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ be a bijective function. Then ζ is a contra N_o -b \mathbb{C} -cts function if $\text{N}_\text{o}\text{-cl}(\zeta(G_N)) \subseteq \zeta(\text{N}_\text{o}\text{-b}\mathbb{C}\text{-int}(G_N))$ for every N_o -S G_N in (\tilde{U}_N, τ_N) .

Proof. Let G_N be a N_o -CS in (\tilde{V}_N, φ_N) . Then $\text{N}_\text{o}\text{-cl}(G_N) = G_N$ and $\zeta^{-1}(G_N)$ is a N_o -S in (\tilde{U}_N, τ_N) . By hypothesis, $\text{N}_\text{o}\text{-cl}(\zeta(\zeta^{-1}(G_N))) \subseteq \zeta(\text{N}_\text{o}\text{-b}\mathbb{C}\text{-int}(\zeta^{-1}(G_N)))$. Since ζ is onto, $\zeta(\zeta^{-1}(G_N)) = G_N$. Therefore $G_N = \text{N}_\text{o}\text{-cl}(G_N) = \text{N}_\text{o}\text{-cl}(\zeta(\zeta^{-1}(G_N))) \subseteq \zeta(\text{N}_\text{o}\text{-b}\mathbb{C}\text{-int}(\zeta^{-1}(G_N)))$. Now, $G_N \subseteq \zeta(\text{N}_\text{o}\text{-b}\mathbb{C}\text{-int}(\zeta^{-1}(G_N)))$ which implies $\zeta^{-1}(G_N) \subseteq \zeta^{-1}(\zeta(\text{N}_\text{o}\text{-b}\mathbb{C}\text{-int}(\zeta^{-1}(G_N)))) = \text{N}_\text{o}\text{-b}\mathbb{C}\text{-int}(\zeta^{-1}(G_N)) \subseteq \zeta^{-1}(G_N)$. Hence $\zeta^{-1}(G_N)$ is a N_o -b \mathbb{C} -OS in (\tilde{U}_N, τ_N) . Thus, ζ is a contra N_o -b \mathbb{C} -cts function.

Theorem 3.18. Let $\zeta : (\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ be a function. Suppose that one of the following statements hold

- i) $\zeta(\text{N}_\text{o}\text{-b}\mathbb{C}\text{-cl}(H_N)) \subseteq \text{N}_\text{o}\text{-int}(\zeta(H_N))$ for each N_o -S H_N in (\tilde{U}_N, τ_N) .
- ii) $\text{N}_\text{o}\text{-b}\mathbb{C}\text{-cl}(\zeta^{-1}(H_N)) \subseteq \zeta^{-1}(\text{N}_\text{o}\text{-int}(H_N))$ for each N_o -S H_N in (\tilde{V}_N, φ_N) .
- iii) $\zeta^{-1}(\text{N}_\text{o}\text{-cl}(H_N)) \subseteq \text{N}_\text{o}\text{-b}\mathbb{C}\text{-int}(\zeta^{-1}(H_N))$ for each N_o -S H_N in (\tilde{V}_N, φ_N) .

Then ζ is a contra N_o -b \mathbb{C} -cts function.

Proof. i) \Rightarrow ii) Let H_N be a N_o -S in (\tilde{V}_N, φ_N) . Then $\zeta^{-1}(H_N)$ is N_o -S in (\tilde{U}_N, τ_N) . By hypothesis, $\zeta(\text{N}_\text{o}\text{-b}\mathbb{C}\text{-cl}(\zeta^{-1}(H_N))) \subseteq \text{N}_\text{o}\text{-int}(\zeta(\zeta^{-1}(H_N))) \subseteq \text{N}_\text{o}\text{-int}(H_N)$. Now,

$\text{N}_\text{o}\text{-b}\mathbb{C}\text{-cl}(\zeta^{-1}(H_N)) \subseteq \text{N}_\text{o}\text{-int}(H_N)$. Therefore, $\text{N}_\text{o}\text{-b}\mathbb{C}\text{-cl}(\zeta^{-1}(H_N)) \subseteq \zeta^{-1}(\text{N}_\text{o}\text{-int}(H_N))$ for each N_o -S H_N in (\tilde{V}_N, φ_N) .

ii) \Rightarrow iii) Let H_N be a N_o -S in (\tilde{V}_N, φ_N) . Then $\zeta^{-1}(H_N)$ is N_o -S in (\tilde{U}_N, τ_N) . By hypothesis, $\text{N}_\text{o}\text{-b}\mathbb{C}\text{-cl}(\zeta^{-1}(H_N)) \subseteq \zeta^{-1}(\text{N}_\text{o}\text{-int}(H_N))$. Taking complement on both sides, $(\zeta^{-1}(\text{N}_\text{o}\text{-int}(H_N)))^c = (\text{N}_\text{o}\text{-b}\mathbb{C}\text{-cl}(\zeta^{-1}(H_N)))^c \Rightarrow \zeta^{-1}(\text{N}_\text{o}\text{-int}(H_N))^c \subseteq \text{N}_\text{o}\text{-b}\mathbb{C}\text{-int}(\zeta^{-1}(H_N))^c \Rightarrow \zeta^{-1}(\text{N}_\text{o}\text{-cl}(H_N))^c \subseteq \text{N}_\text{o}\text{-b}\mathbb{C}\text{-int}(\zeta^{-1}(H_N))^c$. Suppose that iii) holds. Let H_N be a N_o -CS in (\tilde{V}_N, φ_N) . Then $\text{N}_\text{o}\text{-cl}(H_N) = H_N$

and $\zeta^{-1}(H_N)$ is a N_o -S in (\tilde{U}_N, τ_N) . Now $\zeta^{-1}(H_N) = \zeta^{-1}(\text{N}_\text{o}-\text{cl}(H_N)) \subseteq \text{N}_\text{o}-\text{bc-int}(\zeta^{-1}(H_N)) \subseteq \zeta^{-1}(H_N)$. Then $\zeta^{-1}(H_N)$ is a N_o -bc-OS in (\tilde{U}_N, τ_N) . Hence ζ is a contra N_o -bc-cts function.

Theorem 3.19. Let $\zeta : (\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ be any NTS. Let $\zeta : (\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ be a function. Suppose that one of the following properties hold.

- i) $\zeta^{-1}(\text{N}_\text{o}-\text{bc-cl}(H_N)) \subseteq \text{N}_\text{o}-\text{bc-int}(\text{N}_\text{o}-\text{bc-cl}(\zeta^{-1}(H_N)))$ for each N_o -S H_N in (\tilde{V}_N, φ_N) .
- ii) $\text{N}_\text{o}-\text{bc-cl}(\text{N}_\text{o}-\text{bc-int}(\zeta^{-1}(H_N))) \subseteq \zeta^{-1}(\text{N}_\text{o}-\text{bc-int}(H_N))$ for each N_o -S H_N in (\tilde{V}_N, φ_N) .
- iii) $\zeta(\text{N}_\text{o}-\text{bc-cl}(\text{N}_\text{o}-\text{bc-int}(G_N))) \subseteq \text{N}_\text{o}-\text{bc-int}(\zeta(G_N))$ for each N_o -S G_N in (\tilde{U}_N, τ_N) .
- iv) $\zeta(\text{N}_\text{o}-\text{cl}(H_N)) \subseteq \text{N}_\text{o}-\text{bc-int}(\zeta(G_N))$ for each N_o -S G_N in (\tilde{U}_N, τ_N) .

Then ζ is a contra N_o -bc-cts.

Proof. i) \Rightarrow ii) Let H_N be a N_o -S in (\tilde{V}_N, φ_N) . Then $\zeta^{-1}(H_N)$ is a N_o -S in (\tilde{U}_N, τ_N) . By hypothesis, $\zeta^{-1}(\text{N}_\text{o}-\text{bc-cl}(H_N)) \subseteq \text{N}_\text{o}-\text{bc-int}(\text{N}_\text{o}-\text{bc-cl}(\zeta^{-1}(H_N)))$.

Taking complement on both sides, $(\text{N}_\text{o}-\text{bc-int}(\text{N}_\text{o}-\text{bc-cl}(\zeta^{-1}(H_N))))^c \subseteq (\zeta^{-1}(\text{N}_\text{o}-\text{bc-cl}(H_N)))^c$
 $\Rightarrow \text{N}_\text{o}-\text{bc-cl}(\text{N}_\text{o}-\text{bc-cl}(\zeta^{-1}(H_N)))^c \subseteq \zeta^{-1}(\text{N}_\text{o}-\text{bc-cl}(H_N))^c \Rightarrow \text{N}_\text{o}-\text{bc-cl}(\text{N}_\text{o}-\text{bc-int}(\zeta^{-1}(H_N))^c) \subseteq \zeta^{-1}(\text{N}_\text{o}-\text{bc-int}(H_N^c)) \Rightarrow \text{N}_\text{o}-\text{bc-cl}(\text{N}_\text{o}-\text{bc-int}(\zeta^{-1}(H_N^c))) \subseteq (\text{N}_\text{o}-\text{bc-int}(H_N^c))$. Hence $\text{N}_\text{o}-\text{bc-cl}(\text{N}_\text{o}-\text{bc-int}(\zeta^{-1}(H_N))) \subseteq \zeta^{-1}(\text{N}_\text{o}-\text{bc-int}(H_N))$ for each N_o -S H_N in (\tilde{V}_N, φ_N) .

ii) \Rightarrow iii) Let G_N be a N_o -S in (\tilde{U}_N, τ_N) . Let $H_N = \zeta(G_N)$, then $G_N \subseteq \zeta^{-1}(H_N)$. By hypothesis, $\text{N}_\text{o}-\text{bc-cl}(\text{N}_\text{o}-\text{bc-int}(G_N)) \subseteq \text{N}_\text{o}-\text{bc-cl}(\text{N}_\text{o}-\text{bc-int}(\zeta^{-1}(H_N))) \subseteq \zeta^{-1}(\text{N}_\text{o}-\text{bc-int}(H_N))$
 $\Rightarrow \text{N}_\text{o}-\text{bc-cl}(\text{N}_\text{o}-\text{bc-int}(G_N)) \subseteq \zeta^{-1}(\text{N}_\text{o}-\text{bc-int}(H_N))$. Therefore, $\zeta(\text{N}_\text{o}-\text{bc-cl}(\text{N}_\text{o}-\text{bc-int}(G_N))) \subseteq \zeta^{-1}(\text{N}_\text{o}-\text{bc-int}(H_N)) = \text{N}_\text{o}-\text{bc-int}(\zeta(G_N))$. Hence $\zeta(\text{N}_\text{o}-\text{bc-cl}(\text{N}_\text{o}-\text{bc-int}(G_N))) \subseteq \text{N}_\text{o}-\text{bc-int}(\zeta(G_N))$.

iii) \Rightarrow iv) Let G_N be a N_o -S in (\tilde{U}_N, τ_N) . Then $\text{N}_\text{o}-\text{bc-int}(G_N) = G_N$. By hypothesis, $\zeta(\text{N}_\text{o}-\text{bc-cl}(G_N)) = \zeta(\text{N}_\text{o}-\text{bc-cl}(\text{N}_\text{o}-\text{bc-int}(\zeta(G_N)))) \subseteq \text{N}_\text{o}-\text{bc-int}(\zeta(G_N))$. Thus, $\zeta(\text{N}_\text{o}-\text{bc-cl}(G_N)) \subseteq \text{N}_\text{o}-\text{bc-int}(\zeta(G_N))$.

Suppose (iv) holds. Let H_N be a N_o -OS in (\tilde{V}_N, φ_N) . Then $\zeta^{-1}(H_N) = G_N$ is a N_o -S in (\tilde{U}_N, τ_N) . By hypothesis, $\zeta(\text{N}_\text{o}-\text{bc-cl}(G_N)) \subseteq \text{N}_\text{o}-\text{bc-int}(\zeta(G_N))$. Now, $\zeta(\text{N}_\text{o}-\text{bc-cl}(G_N)) \subseteq \text{N}_\text{o}-\text{bc-int}(\zeta(G_N)) \subseteq \zeta(G_N) \Rightarrow \zeta(\text{N}_\text{o}-\text{bc-cl}(G_N)) \subseteq \zeta(G_N) \Rightarrow \text{N}_\text{o}-\text{bc-cl}(G_N) \subseteq \zeta^{-1}(\zeta(G_N)) = G_N$. This

means that $\text{N}_\text{o}-\text{bc}-\text{cl}(G_N) \subseteq G_N$. But $G_N \subseteq \text{N}_\text{o}-\text{bc}-\text{cl}(G_N)$. Hence $G_N = \text{N}_\text{o}-\text{bc}-\text{cl}(G_N)$. Hence G_N is a $\text{N}_\text{o}-\text{bc}$ -CS in (\tilde{U}_N, τ_N) . Hence ζ is a contra $\text{N}_\text{o}-\text{bc}$ -cts.

Theorem 3.20. If $\zeta : (\tilde{U}_N, \tau_N) \rightarrow (\tilde{V}_N, \varphi_N)$ is contra $\text{N}_\text{o}-\text{bc}$ -cts and (\tilde{V}_N, φ_N) is N_o -regular, then ζ is $\text{N}_\text{o}-\text{bc}$ -cts.

Proof. Let $x \in \tilde{U}_N$ and H_N be any N_o -OS in (\tilde{V}_N, φ_N) containing $\zeta(x)$. Since (\tilde{V}_N, φ_N) is N_o -regular, there exists a N_o -OS G_N in (\tilde{V}_N, φ_N) containing $\zeta(x)$ such that $\text{N}_\text{o}-\text{cl}(G_N) \subseteq H_N$. Since ζ is contra $\text{N}_\text{o}-\text{bc}$ -cts, there exists a $\text{N}_\text{o}-\text{bc}$ -OS W_N of (\tilde{U}_N, τ_N) containing x such that $\zeta(W_N) \subseteq \text{N}_\text{o}-\text{cl}(G_N)$. Then $\zeta(W_N) \subseteq \text{N}_\text{o}-\text{cl}(G_N) \subseteq H_N$. Hence ζ is $\text{N}_\text{o}-\text{bc}$ -cts.

V.CONCLUSION

Many different forms of continuous functions have been introduced over the years. Its importance is significant in various areas of mathematics and related sciences. In this paper we presented contra $\text{N}_\text{o}-\text{bc}$ continuous mappings and discussed some of their properties .

REFERENCES

1. Andrijevic.“On b-open sets in topological spaces”, Math.Vesnik , 48(1), (1996), 59- 64.
2. A.S.Mashhour,ME.Abd El Mousef and S.N.El peeb, “On Precontinuous and weak precontinuous mappings”, proc.Math & Phys.Soc., Egypt. 53 (1982), 47-53.
3. A.Vadivel, J.Sathyaraj, M.Sujatha & M.Angayarkarasi, “Generalizations of nano θ closed sets in nano topological spaces”, Journal of information and computational science, 9,(11), -2019.
4. C.Indirani, M.Parimala&S.Jafari, “ On nano b -open sets in nano topological spaces ”, Jourdan journal of mathematics and statistics (IJMS) 9(3),2016,173-184.
5. D.A.Mary and Arockiarani .A, “On semi pre open sets in nano Topological spaces,” Math.Sci.Int. Res.Jnl, 3(2014),771-773.
6. H.Z.Ibrahim, “Bc -open sets in topological spaces”, Advances in pure mathematics, 2013, 3, 34-40.
7. K.F.Porter, “Regular open sets in topology”, Int.Jour.ofMath.and Math. Sci.,2(1996), 299-302.
8. M.LellisThivagar and C.Richard, “On nano forms of weakly open sets”, Int.Jour.of Math and stat.invent. 1(1),2013,31-37.

9. M.LellisThivagar and C.Richard, On nano Continuity, “Mathematical Theory and Modelling”,3(7),32-37, (2013).
10. N.Levine, “Semi open sets and semi continuity in Topological Spaces”,Amer. Math.Monthly, 70(1963), 36-41.
11. P.Sathishmohan , V.Rajendran, P.K.Dhanasekaran and Brindha.S., “Further properties of nano pre T_0 space, nano pre T_1 space and nano pre T_2 spaces” , Malaya Journal of Mathematik, 7,(1),2019, 34-38.
12. Raad Aziz Al-Abdulla, Ruaa Muslim Abed, “On $B\mathbb{C}$ open sets in Topological Spaces”, International Journal of Science and Research, 3,(10), (2014).
13. R.Vijayalakshmi, Mookambika, A.P, “ Nano delta –g closed sets in Nano Topological paces”,International Jiurnal for Research in Engineering Application and Management” 04,09,109-113,2018.
14. R.Raman, S.Pious Missier, E.Sucila, “A New Notion of Open Sets in Nano Topological Spaces ” Journal of Reattach Therapy and Developmental Diversities, 4, (1):70-76,2021.
15. R.T.Nachiyar, K.Bhuvanewari, “Nano generalized α -continuous and nano α -generalized continuous functions in nano Topological Spaces”, International Journal of Engineering Trends and Technology, 14(2),79-83, 2014.